Модели и структуры данных

       

Операции логического уровня над статическими структурами. Поиск


В этом и следующих разделах представлен ряд алгоритмов поиска данных и сортировок, выполняемых на статических структурах данных, так как это характерные операции логического уровня для таких структур. Однако, те же операции и те же алгоритмы применимы и к данным, имеющим логическую структуру таблицы, но физически размещенным в динамической памяти и на внешней памяти, а также к логическим таблицам любого физического представления, обладающим изменчивостью.

Объективным критерием, позволяющим оценить эффективность того или иного алгоритма, является, так называемый, порядок алгоритма. Порядком алгоритма называется функция O(N), позволяющая оценить зависимость времени выполнения алгоритма от объема перерабатываемых данных (N - количество элементов в массиве или таблице). Эффективность алгоритма тем выше, чем меньше время его выполнения зависит от объема данных. Большинство алгоритмов с точки зрения порядка сводятся к трем основным типам:

  • - степенные - O(N^a);
  • - линейные - O(N);
  • - логарифмические - O(logA(N)). (Здесь и далее запись вида "logА" обозначает "логарифм по основанию А").

    Эффективность степенных алгоритмов обычно считается плохой, линейных - удовлетворительной, логарифмических - хорошей.

    Аналитическое определение порядка алгоритма, хотя часто и сложно, но возможно в большинстве случаев. Возникает вопрос: зачем тогда нужно такое разнообразие алгоритмов, например, сортировок, если есть возможность раз и навсегда определить алгоритм с наилучшим аналитическим показателем эффективности и оставить "право на жизнь" исключительно за ним? Ответ прост: в реальных задачах имеются ограничения, определяемые как логикой задачи, так и свойствами конкретной вычислительной среды, которые могут помогать или мешать программисту, и которые могут существенно влиять на эффективность данной конкретной реализации алгоритма. Поэтому выбор того или иного алгоритма всегда остается за программистом.

    В последующем изложении все описания алгоритмов даны для работы с таблицей, состоящей из записей R[1], R[2], ..., R[N] с ключами K[1], K[2], ..., K[N]. Во всех случаях N - количество элементов таблицы. Программные примеры для сокращения их объема работают с массивами целых чисел. Такой массив можно рассматривать как вырожденный случай таблицы, каждая запись которой состо- ит из единственного поля, которое является также и ключом. Во всех программных примерах следует считать уже определенными: константу N- целое положительное число, число элементов в массиве; константу EMPTY - целое число, признак "пусто" (EMPTY=-1); тип - type SEQ = array[1..N] of integer; сортируемые последовательности.


    Для самого общего случая сформулируем задачу сортировки таким образом: имеется некоторое неупорядоченное входное множество ключей и должны получить выходное множество тех же ключей, упорядоченных по возрастанию или убыванию в численном или лексикографическом порядке.

    Из всех задач программирования сортировка, возможно, имеет самый богатый выбор алгоритмов решения. Назовем некоторые факторы, которые влияют на выбор алгоритма (помимо порядка алгоритма).

    1). Имеющийся ресурс памяти: должны ли входное и выходное множества располагаться в разных областях памяти или выходное множество может быть сформировано на месте входного. В последнем случае имеющаяся область памяти должна в ходе сортировки динамически перераспределяться между входным и выходным множествами; для одних алгоритмов это связано с большими затратами, для других - с меньшими.

    2). Исходная упорядоченность входного множества: во входном множестве (даже если оно сгенерировано датчиком случайных величин) могут попадаться упорядоченные участки. В предельном случае входное множество может оказаться уже упорядоченным. Одни алгоритмы не учитывают исходной упорядоченности и требуют одного и того же времени для сортировки любого (в том числе и уже упорядоченного) множества данного объема, другие выполняются тем быстрее, чем лучше упорядоченность на входе.

    3). Временные характеристики операций: при определении порядка алгоритма время выполнения считается обычно пропорциональным числу сравнений ключей. Ясно, однако, что сравнение числовых ключей выполняется быстрее, чем строковых, операции пересылки, характерные для некоторых алгоритмов, выполняются тем быстрее, чем меньше объем записи, и т.п. В зависимости от характеристик записи таблицы может быть выбран алгоритм, обеспечивающий минимизацию числа тех или иных операций.

    4). Сложность алгоритма является не последним соображением при его выборе. Простой алгоритм требует меньшего времени для его реализации и вероятность ошибки в реализации его меньше. При промышленном изготовлении программного продукта требования соблюдения сроков разработки и надежности продукта могут даже превалировать над требованиями эффективности функционирования.




    Разнообразие алгоритмов сортировки требует некоторой их классификации. Выбран один из применяемых для классификации подходов, ориентированный прежде всего на логические характеристики применяемых алгоритмов. Согласно этому подходу любой алгоритм сортировки использует одну из следующих четырех стратегий (или их комбинацию).

    1). Стратегия выборки. Из входного множества выбирается следующий по критерию упорядоченности элемент и включается в выходное множество на место, следующее по номеру.

    2). Стратегия включения. Из входного множества выбирается следующий по номеру элемент и включается в выходное множество на то место, которое он должен занимать в соответствии с критерием упорядоченности.

    3). Стратегия распределения. Входное множество разбивается на ряд подмножеств (возможно, меньшего объема) и сортировка ведется внутри каждого такого подмножества.

    4). Стратегия слияния. Выходное множество получается путем слияния маленьких упорядоченных подмножеств.

    Далее приводится обзор (далеко не полный) методов сортировки, сгруппированных по стратегиям, применяемым в их алгоритмах. Все алгоритмы рассмотрены для случая упорядочения по возрастанию ключей.




    Содержание раздела